Speaking Engagements + Videos
02 Mar 2023
The Power of Biostatistics: Eric J. Daza Holds the Key to Evolving the Healthcare Industry
We caught up with Eric at the 2022 Joint Statistical Meetings (JSM), the world’s largest annual gathering of statisticians and data scientists, to learn more about his passion for biostatistics, how his work makes a difference in healthcare, and advocacy for justice, diversity, equity and inclusion in the field.
11 Jul 2022
Eric Daza | Important Ideas in Causal Inference
Andrew Gelman and Aki Vehtari wrote a paper titled, "What are the most important statistical ideas of the past 50 years?". The first idea in the list is "counterfactual causal inference". Eric Daza (Evidation Health) walks us through the main ideas of the Gelman & Vehtari paper, drawing examples from several fields, including medical & healthcare statistics.
14 Sep 2021
Data Science in the Biomedical Industry
This career symposium is designed to offer attendees the opportunity to hear from diverse and experienced data scientists about their education and career paths, the skills expected of these positions, where and how to seek these types of positions, and what to expect when working in these fields.
26 Aug 2021
Statistical considerations for successful digital health innovation
Why should you report your modeling plan or statistical analysis plan before seeing any data? Why should we all ditch the term ‘statistical significance’ but keep statistical evidence? And how? A fantastic discussion with Eric Daza, Lead Statistician for Digital Health Outcomes at Evidation Health, as he dives into key themes from his recent pieces: Artifice or intelligence? and Ditch ‘statistical significance’.
14 Jun 2021
N-of-1 Science & Causal Inference | Philosophy of Data Science
Much of our scientific inference revolves around the identification and replication of patterns in data. So what can be done when N=1? Eric Daza gives us a statistician's perspective on the ideas behind N-of-1 studies, its best examples, and strongest critiques.
30 Jun 2020
FilipinxAms in Healthtech + Safety During COVID19
Charity will discuss her background as a health and safety expert, the Return to Work Guidelines and her current work with various tech companies on re-opening during COVID19 and its impact on communities and communities of color.
Eric will discuss his professional background in healthtech and technical and creative contributions in STEAM in general and also by communities of color during COVID19.
11 Oct 2017
Design Trumps Analysis: Drawing Causal Conclusions using Big Data
This talk provides a high-level, fairly non-technical introduction to causal discovery using big data; i.e., how to carefully draw causal conclusions from big data analyses. Two general, complementary approaches for causal discovery will briefly be illustrated in the context of big data analysis: 1.) mechanism-focused and structural approaches using causal graphs, and 2.) the effect-focused statistical framework of potential outcomes (emphasis on the latter).
15 Mar 2017
Three Statistically Significant Principles
This is a short presentation I gave at the Quantified Self Bay Area Meetup event titled "Show & Tell #41" on March 15, 2017. Summary:
Big data does not imply big accuracy. (S)
Significance does not imply importance. (S)
Correlation does not imply causation. (P)
Causation can imply correlation. (P)
Aug 2011
A Statistical New World
Some excellent grad school friends of mine created this fun musical take (based on Disney's "A Whole New World") on what it's like to be a statistician---and asked me to perform and handle music production! From the 2011 American Statistical Association "Promoting the Practice and Profession of Statistics" Video Competition.